Incident Angle- and Polarization-Insensitive Metamaterial Absorber using Circular Sectors

نویسندگان

  • Dongju Lee
  • Jung Gyu Hwang
  • Daecheon Lim
  • Tadayoshi Hara
  • Sungjoon Lim
چکیده

In this paper, an incident angle- and polarization-insensitive metamaterial absorber is proposed for X-band applications. A unit cell of the proposed absorber has a square patch at the centre and four circular sectors are rotated around the square patch. The vertically and horizontally symmetric structure of the unit cell enables polarization-insensitivity. The circular sector of the unit cell enables an angle-insensitivity. The performances of the proposed absorber are demonstrated with a full-wave simulation and measurements. The angular sensitivity is studied at different inner angles of the circular sector. When the inner angle of the circular sector is 90°, the simulated absorptivity is higher than 90%, and the frequency variation is less than 0.96% for incident angles up to 70°. The measured absorptivity at 10.44 GHz is close to 100% for all the polarization angles under normal incidence. When the incident angles are varied from 0°- 60°, the measured absorptivity is maintained above 90% for both the transverse electric (TE) and the transverse magnetic (TM) modes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angle- and Polarization-Insensitive Metamaterial Absorber using Via Array

In this paper, we propose an angle- and polarization-insensitive metamaterial absorber. We design a metamaterial unit cell that is based on a split ring cross resonator (SRCR). We observe that the absorption frequency and absorption ratio are insensitive to incident angles when a via array surrounds the SRR. We demonstrate the effect of the via array using full-wave simulations by comparing the...

متن کامل

Infrared perfect absorber based on nanowire metamaterial cavities.

An infrared perfect absorber based on a gold nanowire metamaterial cavities array on a gold ground plane is designed. The metamaterial made of gold nanowires embedded in an alumina host exhibits an effective permittivity with strong anisotropy, which supports cavity resonant modes of both electric dipole and magnetic dipole. The impedance of the cavity modes matches the incident plane wave in f...

متن کامل

X-Band Operations Metamaterial Absorber with Extended Circular Ring Topology for Size Reduction

A metamaterial electromagnetic wave absorber consisting of a big circular ring patch with four smaller suppression circular rings is presented in this report. The metamaterial electromagnetic wave absorber introduces the concept of size reduction by suppressing the resonance frequency. An FR4 substrate was used and the incidental wave angles were varied from 0 0 to 60 0 . Simulations results sh...

متن کامل

Ultra-Thin Multi-Band Polarization-Insensitive Microwave Metamaterial Absorber Based on Multiple-Order Responses Using a Single Resonator Structure

We design an ultra-thin multi-band polarization-insensitive metamaterial absorber (MMA) using a single circular sector resonator (CSR) structure in the microwave region. Simulated results show that the proposed MMA has three distinctive absorption peaks at 3.35 GHz, 8.65 GHz, and 12.44 GHz, with absorbance of 98.8%, 99.7%, and 98.3%, respectively, which agree well with an experiment. Simulated ...

متن کامل

A Fractal-based Compact Broadband Polarization Insensitive Metamaterial Absorber Using Lumped Resistors

In this article, a broadband polarization insensitive metamaterial absorber has been proposed for C-band (4–8 GHz) applications using lumped resistors. The unit cell of the proposed structure is based on an inverted Minkowski fractal loop, where four lumped resistors are mounted to obtain a broad absorption band at the expense of 5 mm thick dielectric substrate, which is only 0.033k0 with respe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016